

Pump System Info Card

Top 10 Energy Conservation Measures

- Shut down pumps when not needed by manufacturing processes
- 2. Operate the minimum number of pumps that systems require
- 3. Use VFD instead of throttle valve for flow control
- 4. Trim or change pump impellers on oversized pumps
- 5. Reduce pipe and valve pressure losses
- 6. Re-tune pumping system when manufacturing process requirements change
- 7. Restore internal housing clearance
- 8. Replace worn throat bushings, wear rings, impellers, and pump bowls
- 9. Install new properly sized/selected pumps
- Replace standard efficiency motors with NEMA premium motors

Pump System Energy Losses

^{*}Courtesy of Bhaskaran Gopalakrishnan

Pump Brake Horse Power Formula

Pump Brake Horse Power (hp) = $\frac{Flow Rate (GPM) \times Head (ft w.c.) \times SG}{3960 \times Pump efficiency}$

Pump Affinity Laws

$$\frac{Q_2}{Q_1} = \frac{N_2}{N_1}$$

Q = Pump flow rate

$$\frac{H_2}{H_1} = \left(\frac{N_2}{N_1}\right)^2$$

N = Pump speedH = Pump head

$$\frac{P_2}{P_1} = \left(\frac{N_2}{N_1}\right)^2$$

P = Pump power

Rules of Thumb

- Annual motor operation cost: \$300/hp*
- Decreasing pump flow rate by 50% can reduce pump power by 88%

betterbuildingssolutioncenter.energy.gov

^{*}Based on 5 cents/kWh, 93% efficiency, 3 shifts, 7 days a week operation, two weeks off/downtime.

Pump System Info Card

Unit Conversion

1 ft w.c. = 0.43 psi; 1 GPM = 0.00144 MGD; 1 hp = 0.746 kW

Annual Water Pumping Cost for 1,000 Feet of Pipe

^{*}Based on 1,000 ft. for clean iron and steel pipes (schedule 40) for pumping 70°F water. Electricity rate of 0.05 \$/kWh and 8,760 operating hours annually. Combined pump and motor efficiency of 70%.

Pump Curve Sensitivity for Pump Reliability

^{*}Courtesy of P. Barringer

Energy Cost for Pump Driven by 100-hp Motor					
Operating Time	Energy Costs for Various Electricity Costs				
	2¢ per kWh	4¢ per kWh	6¢ per kWh	8¢ per kWh	10¢ per kWh
1 hour	\$1.60	\$3.30	\$4.90	\$6.60	\$8.20
24 hours	\$39	\$79	\$119	\$159	\$198
1 month	\$1,208	\$2,416	\$3,625	\$4,833	\$6,042
1 year	\$14,500	\$29,000	\$43,600	\$58,000	\$72,600

Resources

- 1. Integrated Energy Tool Suite by US Department of Energy
- Improving Pumping System Performance: A Sourcebook for Industry by US Department of Energy
- 3. Pump Tip Sheets by US Department of Energy

betterbuildingssolutioncenter.energy.gov